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ABS TRACT

The purpose of this  art icle is threefold:  (i ) to present
in a unified fashion the theory of genera l ized gradients , whose
elements are at present  scattered in variou s sources;  ( i i)  to
give an account of the ways in which the theory has  been
applied; (i i i )  to prove ne~ results  concerning generalized
gradients of summat ion  funct ionals , po intwise maxima , and
integral funct ionals  on subspaces of L . These las t -
mentioned formulas  are obtained with an eye to future  appli-
cations in the calculus of var ia t ions  3nd optimal control (on9
such is given in the f inal  sect ion).  Their woofs can be re-
garded as appl ica t ions  of the existing theory of subgradient s
of convex funct ionals  as developed by R~ ck a te l l a r , loffe  and
Levin , Valadier , and others .
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r r i ~~: 1. 1

Fhc ~ ~~i r p ~~- L- ~f t h i s  t i i c l e  i~ th r ee f 1n : ( i )  tc p~~ sent in a un i f i ed

~~i i i  :~ ~~ the~~ry of g e n e r a l i z e d  g r a d i e n t s , whose e l em e n t s  are at

~r escnt  :-~c i t t ~~re ’l in v~iri ~ us  ~ources (~~1) ; ( i i )  to give an account of the

ways in which the theory has  been applied (~~~); (i i i )  to prove new resul ts

concerning qenera l i zed  gradient s of summation funct iona ls  (~~3), point -

wise m a x i r n - i  ~~-l )  and in tegra l  fur ic t ionals  on subspaces of L~ (~~5)

These l a s t - m en t i o n e d  formulas  are obtained with an eye to future ap-

o lic~i t i on s  in the ca l cu lus  of var ia t ions  and optimal control (one such is

given in §h) .  Their proofs can be regarded as appl icat ions of the exist-

ing th eo~; of subg~ad ien t s  of convcx f u nct i o n a l s  as developed by

R~ c~~~f~ i 1or . Icffe  and Levin , Vrj adier and others (see [19] 126] for

r e f °r ~ r ices) .

~~. ~e fin i 1on.  Basic prop ert ies

L c t  U he an open subset of a Banach space X, and let a func-

t i i ~n f: U R be given. We shall suppose that f is Lipschitz on U

i. ~~~. tha t  for some constant  K, for all u 1 
and u 2 in U , we have

( 1 .  1) f(u 1) - f (u 2 ) < K f l u 1 
- u 2 II

Depar t r ren t  of Mathemat ic s, The University of British Co’umbia ,
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Let us  n w  ‘ix  a point x in U and any point v in X

)e~i f l i t ion  1. The qen~-r~~1ized d i rec t iona l  derivat ive of f at x in the

d i r ~-ct i o n  v , denoted f°(x ;v ) ,  is g iven  by

( l . a )  f 0 (x ;v )  = u r n  sup [f (y ~~ v) -

y — ~ x

X L U

(Here  of cour se y belongs to X m d  X to (0 , ci. )

Note th ot  t h i s  d e f i n i t i o n  does not presuppose the existence of

any l imi t , and that  in view of (1. 1), f °(x;v) is a fini te number for all

v in X . The following observation is most important :

Lemma. The func t ion  v -
~~ f °(x;v)  is positively homogeneou s and

subaddi t ive , and sm t i s f i e s

0f ( x ; v ) < K  V

Pro of: The homogenei ty  and the inequal i ty  are immediate  consequences

of the d e f i n i t i o n .  As for the subaddi t iv i ty,  let v and w In X be

given. Then

f ~ (x ;v+w) = Urn s u p [ f ( y  + Xv + X~~) - f(y) ] /~
y -~ x
X i O

< lirn sup [f ( y + ~~v + x w )  - f ( y + X w ) ] / ~.

X l  0

+ lim su p { f (y +  Xw) - f(y) ]/X

‘ 1 X i  0

f 0(x ;v)  1- f °(x :w) . Q .E . D.

- 2_
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In view of the above lemma , it follows from t he Hahr i-Bana ch

theorem [12 , p. 62] that there exists at least one linear functional

• ~: X -~~ R satisfyi ng

( 1. 3) f °( x;v) > ( v, r, ) for all v in X

it is a furth er consequence of the lemma that ~, is continuous.  Thus

*r, belongs to X

*(As usual , X denotes the (continuous) dual of X and (. ,

*lAs the duali ty pairing between X and X .)

Definition 2. The generalized gradient of f at x , de noted 8f(x)

is the ( nonempty) set of all r, in X’ satisfying (1. 3).

We now proceed to discuss some of the fundamental results in

the calculu s of generalized gradients.

1. Nature of 8f [9 , Proposition I].

*8f( x) is a nonempty convex subset of X . It is closed in the

* *strong topology of X and bounded by K; thus 8f(x) is w -compact.

2. f 0(x; ) is the support function of 81(x) [9 , Proposition 11.

This means that for any v in X, we ha ve

0f (x;v) = m ax {( v ,~ ,) :  ~~e 8 f ( x)}

3. 8 f ( . )  is w -upper semicontinuous [9 , Pro position 7].

I. e . ,  if e 8f(x ~) where x1 
-

~ x in X and — r~ in X * ( w )

then r, E 8f( x)

4. f °( . ;  .) is upper semicontinuous.

-3-
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Let x . —
~~ x nd v —. v in X . ! r  - i h  i t h eN ’  ex i s t  h . in

1 1 1

X and ~~~, in (0 , 1) ~u - h  t ha t  f ib Ii X , is l ess  th an  l~ i and
1 1 1

f 0(x . ; v ) < [ f ( x  ~h . \ . v .) - f (x , h , ) J ’ \ . ~ 1/ i1 1 —  1 1 1 1  1 1 1

But the l i m it superior of th r igh t  s i i 4 . ) f  t h i s  i n e q u a l i t y  (;i s i — ~~~) is

easily seen to be ne ~re 1t r th in f 0
( x ; v )  We o b t a i n

- 0 0Urn s up  f (x, ;V . ) f ( x ;v )  Q. E . D.
i-. I-

5. O (—f)(x) = -~ f (x)

This follows fr ~~rn t h r ~’ ob.~ -rva ti ri t h at (-f)° (x ;v) f°(x;-v)

6. If f a t t a i n s  a local m i n i m u m  or m~ix irnum mt x, then 0 8f(x)

[9 , Proposition 6].

7. The mean va lue pr op erty (G. Lebour q [~ 0 ]) .

If x and y are d i s t i n ~-t  p~~i nt s  of X then there  is a po int z in

the o pen l ine  seg men t b~-tween x -m nd y such that

f(y) — f(x) c / y— x , df(z)1

(We assume he re tha t all poin ts  in q u e s t i o n  lie in the set U up on which

f is Lipschi tz .  )

~~. 8f( x) when X = R~ [4 ) .

In th i s  case , u f ( x )  is the sr ~t co{l im V f ( x .): x . - x }  . That is

(f being d i f f e r e n t i a b l e  a. e. by R a d n m i ~’her s theorem) ,  we consider all

seq uences x . conver g in g ~o x such tha t  f is d i f f e r e n t i a b l e  at x .

m d  the indicated l imi t  ex i ’~ts.  The convex hul l  of these l imi t s  is 8f (x )



—

~~~~~~~~~~

This is equivalent to saying that 3f is the minimal upper-semicontinuous

convex-valued multifunction containing the derivative when It exists.

9. If f is convex, 8f(x) coincides with the subdifferentia~ in the

sense of convex analysis [9, Proposition 3]. In view of article 5, a

similar statement hold s if f is concave.

10. If f admits a continuou s G~teaux derivative Df, then 8f(x) =

~Df(x)} [9, PropositIon 4].

When X = R
n
, 8f(x) reduces to a singleton set {r,} iff f is

strongly differentiable at x and Df(x) = r~ (f is said to be strongly

differentiable at x if

lim [f(y+v) - f(y) - Df(x )(v) ]/ I lv f ~ 0
y— X

v— 0

Bourbaki [2] uses the term “ strlctement derivable ”.) Lebourg [21,

Theorem 2. 1] gIves a similar result in the infinite dimensional case.

This shows that a differentiable function may have a generalized gradient

containin g points other than the derivative. The latter is always con-

tai ned in 8f whenever it exists.

11. GeneralIzed gradients of sums.

The inclusion 8(f+g) C 8f + 8g was established in [4]. A more

general study (Including continuous sums and conditions for equality)

appears in §3.

12. Pointwise maxima.
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One c o n  1 -
~~~

- the ;e t i c r a l i n i ~~ qr i d l i - n t  of x — max U t , x) r. ’ t b

; n r a l i c e d  p r i i i -nts at th - i i H ( i ! 0 f l 5  x f ( t , x ) ;  see ~I .

3. ‘.P- sh i l l  t h t  f is r c - p u l o r  it >‘ if for e v e r - ,’ ‘; ii.

X Lh e  U~~u . i 1  n ’ - - sj d e d  t i r .- ’~~i : o l  der i ’i i t i v c

u rn {f(x Xv) — f ( x ) ]/ ~.

1~.ex i s t s , ~nu .; it  sUes  f ’ ( x ; v )  f (x ; v )  . Convex functions anc: onti r .n—

i i s ly  d i t f e m e n t i  P i e  ~unctiens ore r egulor at every point (and c e r t a i n

q u os i ’i i t ~~’r i - r ~~iobie  f un c t i o n s ;  sc-c ar t ic le  16).

1 ~~. Chain  rule 1.

l e t  g m a p  7 to m o th er  Banach space  Y, and suppose th at  p

is ~o n t i n u o u s 1 y  ~~~~~~~~~~ di f f e r e n t i ab l e . Let h : Y — R be L i p s c h i t z .

Thi n , if f : X — R is given by f = h o q, v.e h ave

( 1. 1) ~ f ( x )  C c ’h ( p ( x)) ° Dg(x)

E q u a l i t y  hol ds  if e i t her  h (or -h)  is r e p u l a r  at g (x )  or Dg(x)  is

sun - - : tj v e.

*P~~~ ’ : Sirs e the Upht side of (1 .4)  is convex and w - compact , it

s ut f i c e s  te  prove that , for any v in X,

f °(x ; v) < m ax { ’  D g ( x ) v , ~) :  ~ E 8’n ( g ( x ) ) }

( see [9 , Pro p u s i t i ~.r 
~~ J).  Now any express ion of the form

[f(y + ~v) - f ( y ) J / \

is equ a l  V / pl y ~ \v) — P~ y) ,  ~~ \ for some ~ e a h ( z ) ,  where z is

— e  —
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in the interval  between g(y)  and g(y f Xv) (this is an application of

ar t ic le  7) .  Further , by the mean value theorem ,

[g (y+xv) - g ( y ) ]/X = Dg(w)

for some w in the Interval between y and y + Xv . As y converges

to x and X. to 0 in the above , we can (by taking an app ropriate sub-

seq uence) assume that r, converges (w *) to an element Of ah(g (x) )

(in light of articles 1 and 3). Of course Dg(w) converges to Dg(x)

We obtain

lim sup [f (y  + Xv) - f (y)} /X
y —x
\ L  0

( Dg(x)v , ~~~~)

which yields the desired inequal i ty .

Now suppose that  h is regular  at g(x) . Then by article 2

max {( Dg(x)v, ~,) : E 0h(g(x) )  }

= h°(g( x);  Dg( x)v) = h ’(g(x) ; Dg(x)v)

= u r n  [h(g(x) + XDg(x)v) - h( g(x) ) ] /X
X4 0

= u r n  [h o g ( x + X v )  - h o g(x)]/X
Xi 0

= f ’(x;v)  < f°(x;v) = m a x { (v ,~ ,) :  ~, E 8f(x) } .

This Implies

( 1. 5) 8h(g(x))  o Dg(x) C 8f(x)

as required.

-7- 
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F i n a l l y ,  suppose tha t  D g(x)  is su r j ec t ive .  Then by the in te r io r

mapp ing  theorem , g maps  every neighborhood of x to a neighborhood

of g(x)  . We ded uce

max {( Dg(x)v , ~,) : ~ E 8h(g(x))  }

0
= h (g( x) ; Dg(x)v )

= lim sup [h ( z +  X D g(x ) v)  - h(z)J/ k
z — g ( x )
Xl 0

= lim sup[h(g(y)  + XD g(x)v)  - h( g(y)) ] /X
y— x
Xl 0

= lim sup [h(g(y+ Xv)) - h(g(y))]/X
y — x
X .~ 0

0
= f ( x;v)

We deduce (1. 5) as before. Q. E. D.

14. Chain rule II.

Let g: X —
~ R and h: R — R be Lipschitz. Then if f: X -

~ R is

defi ned by f = h ° g , /

&f( x) C co [8h(g(x)) 8g(x)]

Furthermore , If h is C1, or if h (or -h) is regular at g(x) and g

is continuously G~ teaux differentiable , the symbol “ co ” is sup~~fluou s

and equality holds.

The proof is much like that of chain rule I, and is therefore omitted.

15. Partial generalized gradients.

-8- 
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Let I: X x Y -. R be L ipsch i t z .  Then it is na tu ra l  to denote , for

eac h :s , t he  ge: 1.- r  ~l i z € -’ g r ad i en t  of the  func t ion  y — f (x , y) by

(i
y f (X ~ U s i m i l a r l y  we d e f i n e  a f(x, y) . There exis ts  a funct ion f

(wi th  X = Y R) such th~ ~ t nei ther  of the Sets a f ( x , ~~ ~x~~~’ 
y) x8~~f(x ~ y)

is contained in t h - other. We have, however, the following: if f (or ..f)

is regular  at (x , y) then

8f( x , y) C 8
x

f( X
~ 

y) x 8 f(x , y) .

Proof: Let (~ , q,) belong to 8f(x , y) . It suff ices  to prove that r~ be-

longs to a f(x, y), which in turn is equivalent to the condition that,

for all v

f(x ,y;v) = f°(x,y;v) >

But we have

f(x , y;v) = f’(x, y;v, 0) = f°(x, y;v, 0) > ~ (v , 0), (~, ~))

= ( v ,~~~ . Q.E.D.

A further result in this direction is the following1 if X and Y are finite-

dimensional and f is convex as a function of x alone , then (c,, q~) E

8f(x, y) implies ~, E 8 f(x, y) . This may be proven by means of article 8.

16. Quasidifferentiable functions (Pshenichnyi [25]).

A function f admit t ing one-sided directional derivatives f (x;v)

In the usual sense is said to be quasi-differentiable if there is a convex

* *w ~compact subset M(x) of X such that for each x, for every v

In X ,
-9- 
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(1.  ‘~) f ( x ; v )  ma>J ( v , ~,) : ~ E M ( x ) )

V4 ’P shal l  prove the following: If 1 Is q u a s i - d i f f e r e n t i a b l e  and the

mul t i func t ion  M is upper semicont inuou s, then f Is locally Lipschitz

and regular , and M(x) = 31(x) ( the  upper semicont inu i ty  Is with respect

*to the strong topology on X ).

Proof: Fix x and ~ > 0 . For all y near x , t near 0 and v In

* *B, we have M(y + tv) C M (x) + e B (where B, B are the unit balls

in X , X ). This implies that for all such y,t,v we have f’(y+tv;v)

< f (x ;  v) ~ . If we fix any such y , v and def ine  g( t )  f(x + tv) for

0 < t < T (T independent  of y and v) , it follows that g has  a uni-

formly bounded upper right D i i  den ivate , which is known to imply that

g is Lipschi tz  [17 , (17 . 23) ] .  Thus we may write , for any 0 < T < T

[f (y + TV) - f (y ) 1  /T = 
~ 

g(t)dt

= 
~ f 

f ’(y + tv;v)dt

< f’(x;v) + ~

It follows that f is Lipschitz in a neighborhood of x, and we deduce

as well f°(x;v) < f’(x;v) + ~ . Since ~ is arbitrary, we conclude that

and f’ coincide (I. e. f is regular). That 3f(x) and M(x) are

equal now follows immediately from (1. 6) and article 2. Q. E. D.

t 17. Evaluation functions .

Let ~ be a Banach space of functions from a space T to a

-10-
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B a n i c h  space X such tl -~ i t , ft 1t f i r  a c e r t a i n  t in ‘F , the  mapp ing

— c ( t )  f rom ‘1+ to R is co r i t i ! u - u s .  If U X — P is o given L ipsch i t z

f u n c t i o n , c’ — ’fine F: ~ — P by

=

Then F is Lipschitz , and for  e v er y  e lement  ~ of ~iF(~ ) there ex ists

an e lement  of r ) f ( u ( t ) )  suc h tha t

( v , ~~) = ~ v ( t ) ,  
Y 

for all v in ~

Proof: Since -rr( c i ) = ç ( t )  is a continuou s linear functional , it is Lipschitz ,

and hence so is F . We have F = f o T , and DTr (~~) = ~r . The result

now follows f rom chain rule I. Q. E. D.

2. Related work.

General ized g rad ien t s  were introduced in the author ’ s thesis  [3 ]

and in [4] for the case x p n
; the i n f i n i t e - d i m e n s i o n a l  case was

broached in [9]. They have been used in appl ica t ions  to the ca lcu lus

of var ia t ions  [5] [7] [11], optimal control [6] [10], flow- invariant sets

[1] [4] ,  the inverse func t ion  theorem [8] and mathemat ica l  programming

[9]. Numerical  a lgor i thms employing general ized gradients  have bean

developed by A. A. Goldstein  [i i ] ,  A. Feuer [13] and P. Miff l in  [22].

G. Lebourg [20] [2 1] obtained the mean value theorem of §1 and used

general ized gradients  as a tool to invest igate generic d i f fe ren t i ab i l i ty

properties of locally Llpschi tz  func t ions  on Banach spaces.  Hiriart-

Urruty [18] applies the theory to ma themat i ca l  p rogramming ,  and

— . 1 1—

, - - - - -

~
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B. S. Morduhovic [23] t con t ro l  p rob lems .  L. Thibault [28] extends

propert y ~ o f  ~l to se p ar ab l e  B a n o - ;h spaces by means of the Haar

d e r iva t i ve .  In [~~4 ]  B. Pourci au d i scusses  the properties of general ized

J .a”o b i m n s  ( the e x t e n s i on  f qr ~n E r Q lj z ( - d  g r ad i en t s  to vec to r — valued

fu nc t ions )  in t roduced in [81 ( s ea  also Sweetser [27]) .

Among the many  not ions that  genera l ize  the concept of the deriva-

t ive , there are two ( int roduced subsequent  to general ized gradients)  that

are closely related to the present  work.  These are ‘derivate containers ”

and ‘ screens ’ , defined by J. Warga [29] and H . Halkin [15] respectively.

It can be shown that when X = ~
n
, these concepts are more general than

that of general ized g rad ien t. In inf in ite d imens ions however , these

concepts are not applicable to all locally Lipschitz functions (in con-

t rast  to general ized gradients)  because of the fact that , not being in-

trinisically defined , they require that  f be uniformly approximated by

cont inuously d i f fe ren t iab le  funct ions.  As pointed out to us by J. Warg a ,

this is not always possible (an example is the norm on the space

C[0, 1]).

3. Generalized gradients of summation functionals.

Let (T, 3 , ~t) be a positive measure space, and let U be an

open subset of a Banach space X . We suppose given a function

f: T x U — R, a nd we assume th a t for some k e L1(T, R) (the space

of Integrable functions from T to R) we have, for all t in T and

u1, u2 in U,
-12- 
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(3.  1) f( t , u 1) - f ( t , u 2
) I < k( t )  II u 1 - u 2 II

Finally we suppose that for each x in U, t — f(t , x) is measurable ,

and we define F: X — P as follows:

F( X)  = f f( t , x) ~ (dt )
T

whenever this  in tegral  is de f ined .

Theorem 1. Suppose that  at least one of the following condit ions is

sat isf ied:

(a)  T is countable;  or

(b) X is separable; or

(c) T is a separable metric space , ~i is a regular measure , and the

mapping  t —
~~ a f( t , x) is upper semicontinuous (w *) for each x

If F(x) is defined for some point x in U , then F is defined

and Lipschi tz  in a neighborhood of x , and

(*) 3F(x)C f 
3

~~ 
f(t,x)~~(d t)

T

by which we mean that  to every r~ in 3F(x) there corresponds a

mapping t — t, ( t )  from T to X such that  t — ~ v, ~,(t)) belongs to

L
1
(T, R) for every v in X,

t v , ~~ = 
f ( v , ~( t ) )  ~(dt)
T

for every v in X, and

~( t )  E a f(t , x) ~i- a. e.

- _ 
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If f ( t , ) is regu la r  (see Def in i t ion  3, §1) for each t , then F is

regu l ar  and e q u a l i t y  holds in (~~)

Proof: That F is defined and Lipschitz near x is an immediate con-

sequence of the hypotheses , in part icular  (3.  1).

Let 1~ belong to 3F(x) . Then , for any v in X ,

F°(x;v) = lim sup f [f ( t , y+ Xv) - f(t , y)]/K ~(d t)
y - ÷ x T
Xi 0

Condition (3. 1) allows us to invoke Fatou ’ s Lemma to bring the u r n  sup

under the integral sign and dedu ce:

(3.2) 
f f °(t , x;v) ~.i(dt) > F °( x ;v) > ( v , ta ,)

(the last ineq ua l ity being a consequence of article 2, §1). Let us define

£(t , v) = f °(t , x ;  v) . It follows that ~

‘ is convex in v, and that , for

all t in T and v in X,

I~ (t ,v) I < k(t)

We claim that £ is measurable as a function of t . If (a) hold s this is

auto matic , whereas if (c) hold s It follows fr om the easily proven fact

that f~ (t , x ;  v) is upper semicontinuous with re spect to t (use §1,

article 2). It remains to consider case (b) . Let { d )  be a countable

dense su bset of X . It follows that f °(t , x; v) is equal to

lim sup [f(t , x + dn + Xv ) - f( t , x + d~ )]/X .
d - ’~0
n

X~~~0

X rational
-14- 
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But for each n and \ t h i s  l a s t  expres s ion  is measurable  by hypo thes i s :  it

follows that  the “ coun tab le  u r n  sup ” def ines  a measurable  funct ion of

t .  (

If we now def ine  a convex continuou s funct ion 1’: X — R via

F(v) = f f ( t , v) ~ (d t )
T

then (3. 2) asserts that r~ belong s to the subdi f feren t ia l  of F at 0

We now apply [19, Theorem 1, p. 8] in cases (a) and (b), and [19,

Theorem 1, p. 13] in case (c), to deduce exactly the conclusion of the

theorem regarding ~. (notice that 31(t, 0) = 3 f °(t , X ; 0) = 3~~ f ( t , x) by

Definition 2).

Now let us suppose that f(t,~~) is regular. From the dominated

convergence theorem it follows tha t

F°(x;v) > F ’(x;v)  = f f’ (t, x;v) ~i(dt)

= f f°(t , x;v) ~(d t)

> F°(x ;v)

the last inequality having been established earlier. This shows that

F is regular. Finally, let r~ ( f ( . , 1,(t)) ~.i(dt)) be an element of the
T

right side of (*) . Then (since r,(t)  E 3 f(t , x) p-a .  e.

F°(x ;v) = f f °(t , x;v) ~i(dt)

> f ( v , ~(t) )  ~(d t) = ( v , ~~)

T

-15-
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This implies  that 1, belongs to 3F(x) . Q. E. D.

4. Generalized gradients of pointwise maxima.

Let T be a sequentially compact topological space , and let

f : T X U  -~ R sat isfy

If( t, u 1) — f(t , u 2 ) 1<  K 11 u1 — U
2 H

for all t i n T and u
1, u 2 In U , where U Is an open subset of X .

We suppose that f( .  , x) Is upper semicontinuous for every x in U

and we set

F(x) = max f( t , x)
tE T

It is easy to prove that F is Lip schitz on U

Theorem 2. Suppose that at least one of the following holds :

(a) X is separable; or

(b) T is metrizable (in particular , if T is separable),

and suppose that 3 f(t , x) is upper semicontinuou s (w * ) in (t , x)

Then for any x in U

(*) 8F(x) C U{f a
~

f(t , x) .i.(dt) : ~.i e P[T(x) ] }
T

where T(x) is the (closed) set

{ tc  T: F(x) = f( t , x )}

and P[T(x) J is the set of probability Radon measure s supported on T(x)

by this we mean that to every T~ in 3F(x ) there corre spond an element

~~ of P[T(x) ] and a mapping r,(t) from T to X~ such that for every v

in X, t -. ( v , ~( t)) belongs to L’(T , R) (with respect to ~.i ) and

-16 - 
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~ v , ~~ = f ~ v, t~( t ) )  ~.i(dt)
T

Furthermore , if f(t ,~~) is regular for each t (see De finition 3), th en

F is regular  and equality hold s in (*)

Proof: We begin by proving:

(4. 1) F°(x;v) < max f °(t , x;v)
tE T(x )

Note first that  f~~(t , x;v) is upper semicontinuous and T(x) is compact ,

so that the notation ‘ max ” is j ustified. For any y near x and X near

0, we have

[F(y+ Xv) - F(y) ] /X < [f(t ,y +Xv)  - f(y) ] /X

for any t in T(y + Xv) . Further ( § 1 , article 7) , there is a point z

in the interval between y and y+Xv and a point 
~yX 

belonging to

a f(t , z ) such thatx yX

[f(t. y+ Xv) - f(y) ]/X = ( v , 
~ yX

~f we now assume that we have a sequence of such (y, X) converging

to (x , 0), we ca n pick a subsequence such that converges

to a point and the points t converge to some t0 in T . It follows

tha t t 0 belongs to T(x) , and th at 
~‘c~ 

belong s to 8 f(t 0, x) . From

this argument we can conclude the validity of 4. 1, since (v , ~~~) ~~

f~~(t 0, x;v) .

Now let r~ belong to 3F(x) . Then (4. 1) implies

-17-
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max f ( t , v) > ( v , ~
,) for all v

tE T(x)

where 1(t ,v) = f °(t , x ; v )  . Because is upper semicontinuous in t

an d finite convex in v, we can apply [19 , Theorem 2, p. 33] if (a)

hold s, or [19, Theorem 3, p. 34] if (b) holds , to conclude that ~, be-

longs to the subdifferential at 0 of the function v max (t , v) and
tc T(x)

hence has exactly the form indicated in the theore m (we use here the

fact that 3
v f ( t , 0) = 8

~~
f(t , x)) .

Now let us suppose that each f(t , .)  is regular , and let us set

F’(x ;v) = u r n  inf [F(x+Xv) -

X i 0

We certainly have F’(x;v) < F °(x;v) . In order to prove that F’(x;v)

exists and equal s F°(x;v) (i. e. that F is regular) it suffices to prove

the opposite inequality.

To this end , note that for any X > 0, for any t in T(x), we

have

[F(x+Xv) - F(x) ] 1k > [f(t , x+Xv) - f(t , x)/X

Taking the lim inf of both sides , we obtain

F ’(x;v) > f ’ (t , x;v) = f °(t , x;v) .

Since this is true for any t in T(x), we deduce

F’ (x;v) > max f ( t , x;v) > F°(x;v) ,
te T(x)

in light of (4. 1). This complete s the proof that F Is regular.

-18- 
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We now show that equalit y hold s in (*). Let ~ belon g to the

ri ght side of (*), with ~i. and 1~(t)  characterizin g r, as described there.

Then , for any v in X ,

( v , r~> = f  ( v, ~(t ) \  ~(dt)
T

= f  f~ (t , x;v) ~( dt) f  f ( t , x;v) .i(dt)
T T

= lim {f  f(t , x+Xv) ~(dt)  - f  f(t , x) ~(dt) }/x
X i 0  T T

< u r n  sup {f F(x+ Xv) 1.qdt) - f F(x) ~( dt) }/X
X i 0  T T

= lim sup [F( x+Xv) - F(x)] /k = F0
( x ;v)

X i O

Thus for any v in X we have

F0(x;v) > (v , ~
,)

i. e. r, belongs to 3F(x) . Q. E. D.

Remark. Important special cases in which the upper semicontinuity of

x) and regularity of f(t,) are present occur when f is continuou s

in t and convex in x, or when f admits a (jointly) continuous derivative

D f .
x

5. Integral functionals on subspaces of L~
° (T , X)

In this section we suppose that (T, 3’, ~ ) is a o-finite positive

measure space and X a separable Banach space. L~ (T,X) denotes the

-19-



space of (measurable) essentially bounded functions ~: T — X . We

suppose given i f unc t ion  f : T x U — P (where U is an open subset of

X) with the fol lowin g property : for some e > 0 , the re is a function

k E L 1(T , R) such that for all t in T, for all u 1, u 2 
In an c-neighborhood

of U , we have

I f ( t , U
i

) - f(t , u z ) I < k(t )  llu i - u~ II .

We assume tha t f is measurable as a func tion of t

Finally , we assume that fo r at leas t one q’ E L~~(T , U) the integral

F(q’) = f  f(t , q~(t))  ~i(dt)
T

Is defined (finitely) . It follows that the integral is defined for all q’ in

L (T , U), and that F is locally Lipschitz as a function from L (T , U)

to P

Now let a closed subspace S of L~
° (T , X) be given, and let u s

consider F as a function from S to P (only the values of F on

S fl L~~(T , U) will be relev ant).

Theorem 3. If F: S -~ R is as defined above , the n for any point q, in

L~~(T , U) fl S we have

( ‘~ ) aF (~ ) C f  a f(t , 4 ( t)) ~(dt) ,
T

by which we mean the following: to every ~, in aF( 4~) there correspond s

a map ping t -. ~~(t) from T to X such that ~,(t) belongs to a f(t , q~( t))

-20-
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p - a .  e. a nd such that , for all 13 in S, t -ø ( 13(t),  r.(t) ) belongs to

L (T , R) and

( 1 3,  ~~) = f ( 13(t) ,  ~( t ) )  p (dt)
T

Furthermore , if for each t , f( t , . )  is regular (see Definition 3), the n

F is regular and equa lity hold s in (* ) .

Proof: Let r~ belong to 3 F (q ) ,  and let 13 be any element of S

Then fo r X sm all , q (t) + k 13(t) belong s to the c-neighborhood of U for

all t , and by Fatou ’ s Lemma

f f °(t , ~ ( t ) ;  ~~( t ) )  p (dt) > F°(~~;13) > ( 1 3,  ~~
) .

If we define f (t, x) = f °(t , q~( t ) ;  x), then f is continuous and convex

in x and measurable in t (the latter fact follows j ust as it did in case

(b) of Theorem 1). Consequently I is a “ normal convex integrand ” .

The inequality above says that r, belong s to the subdiffe rential

at 0 of the function (on S)

13 -~ f ~ (t , 13 ( t ) )  p(dt) .
T

The requisites of [19, Theorem 2, p. 22] are present, so that we deduce

the existence of a mapping t — 
~(t) such that for every 13 in S,

t -ø ( 13(t) , r,(t) ) belon g s to L 1(T , R) and

( 13, ~) = f ( 1 3 ( t ) ,  ~(t) ) p( dt) ,
T

-2 1- 

--~~ - ~~~~~~~~~~~~~~~~~~~~ 
- - -

~~~~~~~
_ -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -  ~~~~~---___



___________________________________ 
- . - . ~~~~~~~~~~~~~~~ ~. —-- ---TT~~~

’
~~~~ ~

and such that

~(t )  ( 31 (t , 0) p - a. e.

But a1(t , 0) is equal  to 3 f( t , q ( t ) )  by §1 , article 2. This completes

the proof of the first part.

Now suppose that f(t, .)  is regular . If we set

F’ (q~ ; 13) = lim Inf {F(q ~+Xp) - F( q , ) J / X
X i  0

we have (invoking Fatou ’ s lemma)

F
0

(c~; 13) > F (~ ;~ ) >  f f’ (t , q~(t) ; 13(t)) p (dt)
T

= f f °(t , c~( t ) ;  13( t ) )  p(dt ) > F°(q~;13)

It follows that F is regular.

Now let r, belong to the r ight side of ( *), with represen tation

~(t)  . Then

( ~~, r~> = f ( 13(t), ~,(t) ) p(dt)
T

< f f °(t , q~(t ); 13(t$ ~i(dt )
T

= f f’ (t , q~( t); 13(t)) 1i.(dt) = F°(q~;I3) ,
T

the last equality being a consequence of the preceding calculations.

This implies that r~ belongs to a r’(q,) . Q. E. D.

-22-
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5 . ~~ va n - i t i on a l  problem wi th  s t a t -  ~ofl s t r o i n t  5.

Let f: R~ x R n 
— R ~rni 1;: P~ - P h’ (j ( V O f l  l oca l ly  L i p s c h i t z

fu n c t i o n - s , m d  let two p’ m s  ~< , x 1 
of P~ be specifi ed . Denot ing

the s i t  of absolute ly  con t inuous  f u n - . ’t ions  X: [0 , 1] — R n whose der iv at i vr - s

belong to L ’({O , 1], R
n

) by Tj ., w consider  the fol lowing problem in the

ca lcu lus  of var ia t ions :

m i n i m i z e  f  f ( x ( t ) ,  ~< ( t ) )d t  over A
0

subject  to

(6.  1) x(0)  = x
0 , x(l)  = x

1

and

(6. 2) g (z ~t )) 0 , t e [0 , 1]

As usua l , we call weak local minimu m any z in A which solve s

the above problem relat ive to the e lements  x of A whose derivat ive

5 l ies in some uniform neighborhood of ~

Theorem 4. Let z provide a weak local minimum for the problem de-

scribed above , and suppose that  whenever g (z ( t ) )  = 0, we have

0 ~ 8g( z( t ) )  . Then there exist an absolutely continuou s function

P: [0 , 1] -. P~ , a (nonnegative) Radon measure m supported on the set

{t: g ( z ( t ) )  = 0) ,  and a measurable function y: [0, 1] -. R~ sat isfying
t

y(t )  € 3g( z(t))  rn -a . e . ,  such that (we denote f by f
(0 , t) 0

-23- 
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(6.3) (j (t), p( t )  ~ f  ~j ( s )  m i d s))  E ~ f ( z ( t ) ,  ~ ( t ) )  a. e.
0

Remark. One can :tI’,v mys reduce t h ( -  c a s e  of m u l t i p l e  c on s t r a i n t s 
- - 

- ‘

g1(x(t)) < 0 (1 = 1 , 2 , . . . n) to the one t r e at e d  above by d e f i n i n g  
- . 

- 
-

g(z )  = max g (x) . If each g ’ is locally Lipschi tz , then so Is g .

l < i < n  1 -
.

Furthermore, in the case when each g~ is C , the condi t ign t’hat  0

not belong to u q ( z ( t ) )  is e q u i v a l e n t  (in l ight  of Theo-nem 1) to the re-

qui rement  t ha t  0 not belong to the convex hul l  of the points Dg ’( z ( t ) )

(i  = 1, ~~, . . . n) . This is s ig n i f i c a n t l y  weaker  than the usua l  re qui rement

th  t the vectors Dg ’(z ( t ) )  b~ - linear ly  independent .

Proof: Let X = R n 
~~~~~~~~~~~ and def ine  S to be the fol lowing closed

subs pace of L ( [0 , 11, X)

S = { (x , y) C( {0 , 1], R °) L~ ([0 , 1], R n ): x(t)  = J y( s)ds a. e. }

We define F and G, functions from S to R , via

1
F(x , y) = f  f ( z ( t) ~

- x(t), ~(t) + y( t ) )d t
0

G(x , y) = max g (z ( t )  + x( t ) )
0~ - t~ . l

and we define H . : S — R (i 1, 2 , . . . n) by

H ( x , y) = x~ (l)

(the j th coordinate of the vector x(l) )

-24 ..
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It follows that the e l i - r n -n t  (0 , 0) of S is a local m i n i m u m  on S for

F(x , y) subject  to G(x , y) 0 an-I H m (x ,Y )  = 0 ( 1 = 1, 2 , . . .  n) . Since

all these f u n c t i n n a l s  a r -  L ipschi tz , we may app ly [9 , Theore m 1] to

conclude that  there exist  numbers u , 13, b . (i 1, 2 , . . . n) not all zero

su ch tha t

~~ > 0 , 13 > 0 , f3G(0 , 0) = 0

and such that

( 6 . 4 )  0 E e~~F(0,0) + 133G(0 , 0) + b . 8H~(0 , 0)

The generalized gradient  8F is described by Theorem 3 ( § 5 )  . In the

case of G, note that

G (x , y) = max q (t , lr( x, y))
0<t<1

where iT: S -. C([0 , 1], R~ ) is the “ projection ”

iT(x,y)=x

and whe re ~ : [0 , 1] x C( [0 , 1], nfl ) -ø P is the “ evaluation ”

g ( t , x) = g (x ( t ) )

We invoke §1 ar t icles  13 , 17 and §3 Theorem 2 to deduce that for any

~, in ~3G(0 , 0) there exists a probability Radon measure p. supported

on the set

{t: G(0 , 0) = g(t , z ( t ) )  }

-2 s-  
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m l  y ( t )  be longing  to 3g ( z ( t ) )  p .- a .e .  such that , for all  (x , y )  In

S ,

( (x , y), ~,) = f  ( x(t), y(t)) p.(dt)
[0,1]

After a simpler study of ~1-I, we find from (6. 4) that for certain

integrable functions r~,1, 
~~ 

such that

(~~~
1
( t ) ,  t~,2

( t ) )  E a f (z ( t ) ,  ~(t)) a. e.

for ce r ta in  p and ‘y as described above , a nd for the vector v =  
~~l’ 

.,  6 ]

~~ 
~~ ‘

, we have

(6.5) of {~~1
(t )~ x( t )  + ~2

(t) ~ k(t) }dt + 13 f  ~(t)~ x(t) ~(dt) +v~ x(l) = 0
0 [0,11

whenever X: [0, 1] R~ is absolutely continuous and x(0) = 0

A standard argument from the calculu s of variations (see [16, p. 50])

obtains the following from (6. 5):

t
( 6 . 6 )  ~~~ ( t )  = c + a f ~1( s)d s  + 13 f  ~j( s) p .(ds) a. e.

2 0 0

for some constant  c in

Suppose that a Is 0 . It follows from (6. 5) that 13 is strictl y

positive (for 13 = 0 would Imply v � 0), and hence from (6. 6) that

f  v(s) p .(d s)  is constant. Also , since 13 > 0  we have G(0 , 0) = 0

0
which implies that on the support of p., y is never 0 . This is a con-

trad ict ion , so that we can assume a = 1 . If we set

-2 6 -
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m ~- ~p, : - ( t )  c f  ~1(s)ds

~~~ ~~~
- fl lu - j o n  of t h e  t h e -  c -n:  is seen t i  f’ 1)0w ( tha t  the  su pport of m

lies in th e  s tat e - - i set  is im m e d i a t e  i t  C(0 , 0) = 0; but  if G(0 , 0) < 0

tb -n (3 z 0 and m = 0 ). Q. F. D.
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